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1 Introduction

Transforming data into beliefs is not always straightforward. Data arriving between 2006 and

2012 from the United States’ National Oceanic and Atmospheric Administration show a clear con-

tinuation of the upward trend in average global temperature over previous decades. Yet these data

actually moved us away from consensus; many more Americans believed there was an upward trend

in 2006 than in 2012 (Pew (2012)). Is it possible to rationalize this type of belief updating?

To study disagreement, it can be useful to abstract from the precise statistical techniques used

to interpret data, and to view inference through the lens of a coarse, binary model. Some cases

of disagreement viewed through this lens are whether: extending unemployment benefits increases

unemployment (Hagedorn et al. (2013), Farber et al. (2015)); government spending stimulates the

economy (Ramey (2011), Serrato and Wingender (2016)); the US was at full employment in 2017.

The need for data with specific features makes disagreement especially common in causal in-

ference. For example, there is no data available from an ideal experiment randomly allocating

households across neighborhoods. In studies of neighborhood effects on employment, the best data

that is available has been interpreted as evidence of both the absence (Ludwig et al. (2013)) and

the presence (Aliprantis and Richter (2016)) of neighborhood effects.

This paper studies how common obstacles to identifying causal effects can lead to ambiguity, a

set of possible beliefs, and how an agent might use social learning to resolve that ambiguity. When

the agent does not know how to specify the likelihood function for this complex inference problem,

she cannot engage in Bayesian social learning. She still might want to approach inference with

more sophistication than the rules of thumb typically employed in non-Bayesian social learning.

I suppose the agent extrapolates from observed data under invariance assumptions, using dis-

agreement over multiple issues to infer missing data from other people. This approach will often

lead agents to agree. Sometimes, though, this approach will over-interpret differences of opinion,

creating polarization in situations that might be unexpected.

To frame the issues, I first consider the case of inference when there are no problems of identifi-

cation. An agent observes a sequence of data, where the sampling procedure is identical over time.

At each point in time the agent uses her model to translate the observed data into a point-valued

signal σt ∈ [0, 1] about a binary state of the world s ∈ {0, 1}. Beliefs will converge if subjective

beliefs λt ∈ [0, 1] are formed by taking the average of signals over time.

In the general case when causal effects are not so cleanly identified, we might suppose that an

agent observes iid data yielding coarse, or set-valued, signals. This circumstance is widespread in

the social sciences, where we rarely observe data from an ideal experiment for identifying causal

effects. Beliefs formed by averaging imprecise probabilities over discrete time will converge to a set

(Artstein and Vitale (1975)), a scenario of partial identification.

How might a decision maker choose one belief from a set of possible beliefs? When an agent faces

ambiguity, prominent decision rules instruct her to choose the single belief generating an extreme

utility (Gilboa and Marinacci (2013)).1 Alternatively, a common practice is to form beliefs after

1For example, the maxmin expected utility decision rule maximizes expected utility after choosing the belief that
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searching one’s social network for additional information.

I study the problem of an agent who directly observes data consistent with a set of beliefs, but

who would like to choose the single belief she would have formed with access to data yielding a clear

inference. Such an agent is committed to the scientific ideal of direct observation, but faces time,

resource, or ethical constraints making it infeasible to personally verify the claims in question.

I allow the agent to solve her missing data problem with information observed through her

social network. I assume that communication is restricted to point-valued signals and beliefs. In

the face of such imperfect communication, the agent needs a model of social learning to infer the

data she does not observe from the signals she does observe.

I first show that DeGroot (1974) updating, the benchmark model of non-Bayesian social learn-

ing, solves a special case of the agent’s problem. If the agent addresses her problem of inference

with linear opinion pooling of signals, a common method for combining forecasts and estimates, she

will follow a DeGroot learning rule under a special case of observed data. Strong assumptions on

the data and models in the agent’s network are required, however, for DeGroot updating to solve

the agent’s problem.2

The major contribution of this paper is to show that by searching for a general solution to the

agent’s problem, one can find generalizations of DeGroot updating capable of generating polariza-

tion. Such a learning rule is a desideratum of the literature on social learning for its ability to

reconcile theory and evidence (Golub and Sadler (2016)). DeGroot learning and many of its gen-

eralizations converge to a degenerate distribution for connected networks (Jackson (2008)).3 Yet

empirically we often observe the analogue of a connected network – individuals exposed to sources

of information contradicting their beliefs – together with persistent disagreement.4

A general solution to the agent’s problem using linear opinion pooling requires, in contrast to

standard DeGroot updating, a first stage in which signals are properly transformed. I present the

selection of a model that properly interprets signals as a statistical learning problem, and show

that this problem is not well-posed. That is, frictions from communication generate a fundamental

problem of inference, in that signals do not convey the same information as directly observed data,

and the agent cannot know whether she is properly interpreting signals without this information.

I show that there is an intermediate case, in which the agent can feasibly solve her problem while

invoking more general assumptions than DeGroot updating. Because these assumptions will not

always hold, the agent must make inductive inferences (outside the support of the data) about when

the assumptions are most likely to hold. I study the implementation and belief dynamics of the

updating rule when the agent makes an invariance assumption that differences in interpreting data

would be set by a malevolent nature minimizing the agent’s utility for any decision (Gilboa and Schmeidler (1989)).
The minimax regret decision rule maximizes expected utility after choosing the belief maximizing the agent’s lost
utility from not knowing the true state of the world (Manski (2011)).

2Individuals can be justified in using different models to interpret the same data (Al-Najjar (2009)), the agent
might observe new data over time (Jadbabaie et al. (2012)), and individuals might directly observe different data.

3Time to consensus, though, is not invariant across all connected network structures (Golub and Jackson (2012)).
4There is persistent disagreement over propositions like Iraq had an active WMD program,

President Obama was born in the US, vaccines cause autism, and global warming is occurring despite public
debate. This disagreement persists despite exposure to opposing views (Gentzkow and Shapiro (2011)).
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are consistent across propositions. The agent assesses the credibility of applying this assumption to

each sender by using the relative entropy of their disagreement over all propositions. This assigns

weight to the data inferred from a sender based not on agreement, but based on understanding

how someone interprets data (Sethi and Yildiz (2016)).

Although the agent’s updating rule that is both feasible and general tends to generate con-

sensus, I show that the rule is also capable of generating polarization and can sustain clustered

disagreement, even on a connected network where everyone directly observes the same data and

processes that data with the same model. Polarization is possible because the agent can update

her beliefs away from a signal, which contrasts with updating in DeGroot or bounded confidence

models. In other words, the agent’s updating rule need not lead to constricting belief updating

(Mueller-Frank (2015)). Two keys for generating polarization are low-quality data and perceptions

about the distribution of models for interpreting directly observed data.

The paper proceeds as follows: Section 2 sets the stage for the agent’s problem, describing

how she could arrive at a set of beliefs when directly observing data. Section 3 explores how the

agent might try to resolve the ambiguity she faces by using the signals she receives from individuals

in her social network. Section 4 characterizes solutions to the agent’s problem that are either

easily implementable or fully general, and one that balances feasibility with generality. Section

5 illustrates some of the belief dynamics possible under the feasible and general updating rule.

Section 6 concludes, with Appendix A listing notation to help the reader.

2 Belief Formation via Directly-Observed Data

Suppose there is a finite set of propositions {p1, p2, . . . , pK} = K, none of which can be written

as a compound proposition using other propositions in the set.5 An agent must determine the

truth value of the statements, T (pk) ∈ {0, 1}, and agent i’s beliefs at time t are denoted by

λk
it = Pr(T (pk) = 1).6 The agent directly observes data Wit sampled under identical procedures at

each point in time.

Consider a classical (frequentist) setting. With high-quality data W ∗
it, the agent would be able

to use her model ϕk
i to translate the data into an independent and identically distributed (iid)

sequence of signals {σk∗
it }

T
t=1, where

σk∗
it = ϕk

i (W
∗
it) ∈ [0, 1].

The law of large numbers ensures convergence to the mean of the signal distribution, which I will

5This greatly simplifies the analysis. Al-Najjar (2009) studies the statistical implications of relaxing this assump-
tion, and Paris and Vencovská (1990) and Wilmers (2010) study propositional calculus without this assumption.

6A proposition is a statement that is either true (T (pk) = 1) or false (T (pk) = 0).
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denote by µk∗
i , for beliefs formed as

λk∗
it+1 =

1

t

t∑

n=1

σk∗
in

= βtσ
k∗
it + (1− βt)λ

k∗
it where βt = 1/t. (1)

Now consider a setting in which the agent’s directly-observed data Wit only allows her to

determine a set containing the true signal σk∗
it . Inspired by the literature on partial identification

(Manski (2007), Tamer (2010)), suppose the agent’s model and data allow her to determine a signal

σk
it and its quality θkit,

(σk
it, θ

k
it) = ϕk

i (Wit) ∈ [0, 1]2,

where the true signal is related to the observed signal by

σk∗
it ∈ [ max{0, σk

it − (1− θkit)} , min{σk
it + (1− θkit), 1} ] ≡ [ σk∗

it , σk∗
it ]. (2)

The agent then knows from her signals of imperfect quality that the average

λk∗
it+1 =

1

t

t∑

n=1

σk∗
in ∈ Λk∗

it+1 =

[
1

t

t∑

n=1

σk∗
in ,

1

t

t∑

n=1

σk∗
in

]
,

where the sets [σk∗
it , σ

k∗
it ] and Λk∗

it+1 are often referred to as “imprecise probabilities” (Coolen et al.

(2011)). The set [σk∗
it , σ

k∗
it ] is what can be learned about pk from the directly-observed data under

the most credible assumptions. While the agent can also determine a point estimate σk
it, doing so

requires less credible assumptions, so the agent cannot be sure that E[σk
it] = µk∗

i unless θkit = 1.

Manski (2016) discusses how the length of an interval estimate can be reduced, even as far as a

point estimate, by adopting assumptions of decreasing credibility.

In order to give some interpretation to the above notation, suppose that two researchers had

access to the same sequence of data generated by many states randomly increasing and decreas-

ing their state budgets. The first researcher is interested in learning about the proposition p1=

“Increasing state spending stimulates the state economy.” Suppose that this proposition were true

(T (p1) = 1). In the case of high-quality data where θ1it = 1 for all t, σ1
it = σ1∗

it , and so λ1∗
it+1 can be

calculated from Equation (1) as the mean signal. Supposing that the true mean of the signal distri-

bution were 0.9, the Law of Large Numbers ensures that the first researcher’s belief will converge

to 0.9 as t → ∞.

Now suppose that the second researcher is interested in using the same data to learn the

truth of proposition p2= “Increasing federal spending stimulates the national economy.” Given the

differences between the state and national economies, as well as differences in state and federal

government purchases, the researcher judges her state-level data to be of low-quality, mapping into

signals represented by θ2it = 0.2 for all t. A stylized example would be that the signal distribution

took on a discrete support, with probability 0.25 that σ2
it = 0, probability 0.25 that σ2

it = 0.5, and
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probability 0.5 that σ2
it = 1.

In this case, the second researcher will be subject to ambiguity in addition to risk.7 If the

observed signal is σ2
it = 0, 0.5, or 1, then based on Equation 2 the researcher can bound the true

signal to be within, respectively, [0, 0.8], [0.1, 0.9], or [0.2, 1] (See Figure 1.). Thus, as t → ∞, the

second researcher will infer that the mean of the true signals is µ2∗
i ∈ Λ2∗

i = [0.125, 0.925].8

σ
k
∗

i
t
∈
[σ

k
∗

i
t
,σ

k
∗

i
t
]

θkit10.20

σk
it = 0

1

0

σ
k
∗

i
t
∈
[σ

k
∗

i
t
,σ

k
∗

i
t
]

θkit10.20

σk
it = 1

1

0

σ
k
∗

i
t
∈
[σ

k
∗

i
t
,σ

k
∗

i
t
]

θkit10.20

σk
it = 0.5

1

0

Figure 1: ϕk
i (Wit) = (σk

it, θ
k
it) ⇒ [ σk∗

it , σk∗
it ]

Non-causal propositions can also have low-quality signals for reasons like survey non-response

(Manski (2015)). The above model of belief revision can apply to any proposition for which the

agent faces a missing data problem.

In addition to describing signals, throughout the analysis I will use “high-quality” (relative to

the agent’s model) to describe data yielding point-identified signals (θkit = 1), and “low-quality” to

describe data yielding set-identified signals (θkit < 1). Another interpretation of an extremely low-

quality signal, θkit = 0, is that the agent does not directly observe any data for a given proposition

7In this context a point-valued belief λk
it ∈ (0, 1) represents risk, while a set-valued belief Λk

it ⊆ [0, 1] represents
Knightian uncertainty or ambiguity.

8Confidence intervals for the identified set Λk∗
i are studied in Imbens and Manski (2004) and Stoye (2009), more

generally as confidence regions in Chernozhukov et al. (2007) and Romano and Shaikh (2010), and using Bayesian
methods in Moon and Schorfheide (2012) and Bollinger and van Hasselt (2017).
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pk, so that ϕk
i (∅) = (σk

it, 0) ⇒ σk∗
it ∈ [0, 1]. It could also be the case that the agent’s model ϕk

i is

not capable of extracting information from data. For example, an agent ignorant of genetics and

molecular biology would likely have a model incapable of interpreting data on the human genome.

In such cases, one could assign ϕk
i (W

∗
it) = ϕk

i (Wit) = (σk
it, 0) ⇒ σk∗

it ∈ [0, 1] for any data set. For

this analysis I will assume that for each proposition in question, the agent’s model produces a

point-identified signal given a high-quality data set.

3 Belief Formation via Social Learning

A criticism of Bayesian decision theory is that in some circumstances, it might not be possible

for the agent to express her beliefs using a distribution over the set Λk∗
it . Bayesian decision theory

is difficult to apply to these circumstances, since an imprecise probability cannot be used to make

decisions according to the standard Savage axioms (Gilboa and Marinacci (2013)).

When holding beliefs represented by an imprecise probability Λk∗
it , several approaches to decision

making can be interpreted as picking one belief from the set Λk∗
it , and then using this probability as a

subjective belief with which to make decisions following the Savage axioms. The chosen probability

is typically pessimistic, assuming the worst case in some sense of utility. For example, the Γ-

maxmin utility decision rule maximizes expected utility after choosing the belief that would be

set by a malevolent nature minimizing the agent’s utility for any decision (Gilboa and Schmeidler

(1989)). Similarly, the Γ-minimax regret decision rule chooses the single belief that maximizes the

loss from making decisions with the chosen belief rather than the true probability when the agent

makes decisions to minimize this loss (Manski (2011)).9

When a decision maker does not observe all of the relevant data to form beliefs, there is empir-

ical evidence that such a decision maker will often try to infer the relevant information from social

observations. Examples are as diverse as neighborhood and school choice (de Souza Briggs et al.

(2008)); adoption of a new technology (Conley and Udry (2010), Foster and Rosenzweig (1995));

consumption of a new good (Moretti (2011)); investment decisions (Bursztyn et al. (2014)); re-

tirement savings decisions (Beshears et al. (2015)); and choice of health insurance plans (Sorensen

(2006)).10 The subsequent model explores belief formation when the agent chooses one belief from

Λk∗
it using information from her social network.

3.1 The Agent’s Problem

Suppose the agent is a member of a network of J + 1 individuals from which she might gather

information. The agent directly-observes the information

Iit ≡

{
(λ1

it, σ
1
it, θ

1
it) , . . . , (λK

it , σ
K
it , θ

K
it )

}
.

9Appendix B illustrates these decision rules in the stylized binary model considered in this paper.
10This type of social learning is not restricted to causal propositions. As an example, the Federal Reserve looks

at the beliefs of others when forming beliefs about whether the economy is in a recession or is at full employment.
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To initialize the process we might let λk
i1 = σk

i1; assume that the agent observes point identified

signals from t = −T until t = 1 and then set identified signals for t > 1; or else assume that the

agent has just randomly reset t = 1 (as a random mutation in an evolutionary algorithm). The

agent also observes information in her social network about the truth of propositions. We denote

the set of others in the agent’s network as J . However, the agent does not directly observe the data

individuals in her network (j ∈ J ) directly observe. Instead, the agent observes individuals’ beliefs

and their interpreted data in the form of their signals. Thus, the socially-observed information

available to the agent is

IJt ≡

{
{λ1

jt, σ
1
jt}j∈J 1 , . . . , {λK

jt , σ
K
jt}j∈JK

}
,

where the agent receives information about proposition pk from individuals in J k ⊆ J .

The agent might try updating according to Bayes’ rule:

Pr(T (pk) = 1|σk
it, {σ

k
jt}j∈J k) =

Pr(σk
it, {σ

k
jt}j∈J k |T (pk) = 1)Pr(T (pk) = 1)

Pr(σk
it, {σ

k
jt}j∈J k)

Using beliefs λk
it as the agent’s prior, this would imply updating as

λk
it+1 =

f(σk
it, {σ

k
jt}j∈J k |T (pk) = 1)λk

it

f(σk
it, {σ

k
jt}j∈J k |T (pk) = 1)λk

it + f(σk
it, {σ

k
jt}j∈J k |T (pk) = 0)(1 − λk

it)
.

In a related setting, Acemoglu et al. (2016) document the restrictions that would be required on the

conditional pdfs f(·|T (pk)) for there to be asymptotic agreement across agents. More fundamen-

tally, correctly specifying the likelihood function f(σk
it, {σ

k
jt}j∈J k |T (pk)) can require unrealistic as-

sumptions about the information and computation available to the agent (Acemoglu and Ozdaglar

(2011)).11 Weakening these assumptions is a key motivation of the literature on non-Bayesian social

learning (Molavi et al. (2017)).

Correctly specifying the likelihood function f(ϕk
it(W

∗
it), {ϕ

k
j (Wjt)}j∈J k |T (pk)) would require not

only that the agent know the sampling processes for Wit and Wjt conditional on T (pk), but also the

models {ϕk
j }j∈J k . I rule out Bayesian social learning by restricting social information to beliefs and

signals, assuming that the agent does not observe the additional information required to specify

the likelihood function:

(A1) Imperfect Communication: Agent i can only observe point estimates λk
jt and σk

jt. She cannot

observe measures of the sender’s ambiguity Λk∗
jt , θ

k
jt or their model ϕk

j ∀ j, t, k

The issue captured by A1 is that data must be transformed into information using a model, and

it is difficult for individuals to communicate this process. Therefore, valuable details are lost

11Benôıt and Dubra (2015) and Andreoni and Mylovanov (2012) study polarization under private learning when
agents disagree about f(σk∗

it |T (p
k)). Alternatively, in this context their analyses could be interpreted as agents having

different models for private learning ϕk
i , each proposition pk being a conjunction of simple propositions pk = pk

′

∧pk
′′

,
and W ∗

it being revealed at different subperiods of t for pk
′

and pk
′′

.
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relative to directly observing the data when information is obtained socially.12 This assumption is

appealing because there is a well-documented tendency for researchers to focus on communicating

their point estimates σk
it without communicating about their models ϕk

i or measures of uncertainty

θkit (Manski (2007)). This practice also extends to official statistics (Manski (2015)) and surveys

like the Survey of Professional Forecasters (Manski (2017)). Nevertheless, there is clear evidence

that decision makers treat conflict and imprecision differently (Smithson (1999), Smithson (2013),

Cabantous (2007)). A natural extension for future work would be to relax A1 to allow for agents

to communicate Λk∗
jt and θkjt in addition to point estimates.

With A1 ruling out Bayesian social learning, I assume that the agent uses signals in an effort

to replicate classical inference. Given a loss function L, the agent’s problem is to choose functions

fk from some set F to solve the problem

min
f1,...,fK∈F

K∑

k=1

L
(
E

[
µk∗
i − lim

t→∞
λk
it+1

])
(3)

s.t. (Iit,IJt)

σ̂k
it = fk(Iit,IJt) for k = 1, . . . ,K

λk
it+1 = βtσ̂

k
it + (1− βt)λ

k
it for k = 1, . . . ,K

I will refer to the agent’s construction of her unobserved, high-quality signals σ̂k
it as her inferred

signals. A natural restriction on F is to make inferred signals a weighted average of directly- and

socially-observed signals. In this case, fk can be written as

σ̂k
it = θki︸︷︷︸

share of signal

directly-observed

σk
it + (1− θkit)︸ ︷︷ ︸

share of signal

socially-observed

σk
Jt.

This restriction reframes the choice of fk as the choice of σk
Jt.

13 Posing the inferred signals as

weighted averages also gives an interpretation to θkit as the agent’s subjective judgment about the

credibility of her modeling assumptions and/or a measure of the quality of her data.

4 Solving the Agent’s Problem

4.1 A Feasible Solution Requiring Strong Assumptions

I begin by further restricting F so that the agent infers the signal σk
Jt using linear opinion

pooling (LOP) of social signals. Although undesirable properties of LOP have been documented

(Seidenfeld et al. (2010), Bradley (2017), Ranjan and Gneiting (2010), Lichtendahl et al. (2017)),

I investigate LOP for two reasons. First, LOP is commonly used when facing problems like the

12A1 imposes a version of word-of-mouth learning (Ellison and Fudenberg (1995), Banerjee and Fudenberg (2004)).
13Assuming that {Wit}

∞

t=1 and {ϕk
i }

K
k=1 are exogenous, both {σk

it}
∞

t=1 and {θkit}
K,∞

k=1,t=1
are given. Thus, in an

abuse of notation, I will refer to fk both as the function determining σ̂k
it and as the function determining σk

Jt.
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agent’s problem (where fully Bayesian updating may not be feasible). And second, I investigate

LOP because repeated linear opinion pooling results in DeGroot updating if data are only observed

in the first period, and signals continue to be sent in later periods.

Proposition 1 (DeGroot). If data are only observed once at t = 1, the agent sets λk
i1 = σk

i1,

θkit = θki1 for all t > 1, and subsequent signals are interchangeable with beliefs (σk
it = λk

it and

σk
jt = λk

jt for j ≥ 2), then linear opinion pooling where the agent constructs her inferred signals for

t ≥ 2 as

σ̂k
it = θki σ

k
it + (1− θki )σ

k
Jt where (4)

σk
Jt =

∑

j∈J k

wk
j︸︷︷︸

share of social signal

from individual j

σk
j with wk

j ≥ 0 ∀ j ∈ J k,
∑

j∈J k

wk
j = 1 (5)

is equivalent to DeGroot updating where λ
k
t+1 = Ωk

tλ
k
t and the entries of Ωk

t are

ωk
iit = βtθ

k
i + (1− βt)

ωk
ijt = βt(1− θki )w

k
j .

Proof. As hypothesized, set λk
i1 = σk

i1. For t ≥ 2, the equality of beliefs and signals, together with

the updating equation in the agent’s problem (3) imply that

σk
it+1 = βtσ̂

k
it + (1− βt)σ

k
it

= βtθ
k
i σ

k
it + (1− βt)σ

k
it + βt(1− θki )

∑

j∈J k

wk
j σ

k
jt.

Furthermore, when the data observed in t = 1 generate unbiased point-estimates of signals,

repeated linear opinion pooling/DeGroot updating solves the agent’s problem.

Proposition 2 (Unbiased Social Signals). Maintain assumption A1 and assume again, as we did

in the case of private learning, that

(A2) Averaging Signals: βt = 1/t, so that βtσ̂
k
it + (1− βt)λ

k
it =

1
t

∑t
n=1 σ̂

k
in

If the observed data yield unbiased signals

(A3) Private signals are iid with E[σk∗
it ] ≡ µk∗

i = µk
i ≡ E[σk

i ], and

(A4a) Social signals are iid for each j ∈ J k with E[σk∗
it ] ≡ µk∗

i = µk
j ≡ E[σk

jt] ∀j ∈ J k,

then repeated linear opinion pooling/DeGroot updating following Equations 4 and 5 solves the

agent’s problem.
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Proof. Proposition 6 in Golub and Sadler (2016) states that as long as Ωk is strongly connected

and primitive, then

lim
t→∞

σk
it+1 =

J+1∑

n=1

πk
nσ

k
n1

where πk
n is n’s left-hand eigenvector centrality in Ωk.14 Additionally assuming that each weight

wi· is strictly positive and that θk ∈ (0, 1) to ensure Ωk is primitive, then since
∑J+1

n=1 π
k
n = 1 and

E[σk
n1] = µk∗

i for all n, we know that

E[µk∗
i − lim

t→∞
λk
it+1] = E[µk∗

i −
J+1∑

n=1

πnσ
k
n1] = µk∗

i − µk∗
i = 0.

4.2 A Fully General Solution that Is Not Feasible

The assumptions justifying DeGroot updating as a solution to the agent’s problem are very

restrictive, and need not hold in the general case of the agent’s problem. For example, the agent

might observe data and signals in each period, and social signals could potentially be biased. In

this case, the agent can still solve her problem if she has a model capable of accurately interpreting

the social signals she receives.

Proposition 3 (Biased Social Signals). Maintain assumptions A1-A3. Now suppose that the agent

receives biased signals in the sense that E[σk
jt] 6= µk∗

it , but that the agent has successfully engaged in

statistical learning in the following sense:

(A4b) The agent has a model of social learning gk that interprets social signals as skjt = gk(Iit,IJt).

The skjt are iid for each j ∈ J k with E[σk∗
it ] ≡ µk∗

i = E[skjt] ∀ j ∈ J k.

Then linear opinion pooling where the agent constructs unobserved high-quality signals with her

model as

σ̂k
it = θkitσ

k
it + (1− θkit)σ

k
Jt where (6)

σk
Jt =

∑

j∈J k

wk
jts

k
jt with wk

jt ≥ 0 ∀ j ∈ J k,
∑

j∈J k

wk
jt = 1 (7)

skjt = gk(Iit,IJt) (8)

solves the agent’s problem.

Proof. By A2 we know that limt→∞ λk
it+1 = limt→∞

1
t

∑t
n=1 σ̂

k
in. If the signals are iid, then by the

law of large numbers we know that limt→∞ λk
it+1 = E[σ̂k

it]. After repeatedly applying the linearity

14A network is strongly connected if any agent i has a directed path in the network to any agent j. A strongly
connected network is primitive if each agent attaches a non-zero weight to each agent.
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of the expectations operator, A3 and A4b imply that

lim
t→∞

λk
it+1 = E[σ̂k

it] = E[θ
k

i σ
k
it + (1− θ

k

i )σ
k
Jt] = θ

k

i E[σ
k
it] + (1− θ

k

i )E[σ
k
Jt]

= θ
k

i E[σ
k
it] + (1− θ

k

i )E[
∑

j∈J k

wk
jts

k
jt] = θ

k

i E[σ
k
it] + (1− θ

k

i )
∑

j∈J k

wk
jtE[s

k
jt]

= θ
k

i µ
k
it + (1− θ

k

i )
∑

j∈J k

wk
jtµ

k
jt (9)

= µk∗
i .

Unfortunately, Proposition 3 is just a theoretical result, since the agent does not know the

correct gk. Moreover, the agent cannot find the correct gk.

Determining the correct model for interpreting signals could be viewed as a statistical learning

problem. To put the problem in the notation of statistical learning, here we adapt some notation

from Chapter 1 of Schölkopf and Smola (2002). Suppose that at time t the agent observes outcomes

of high-quality data for herself and everyone in her network,

(x1i , y
1
i ), . . . , (x

K
i , yKi ) ∈ X × [0, 1]

where xki = xi for k = 1, . . . ,K and

(xki , y
k
i ) =

(
[Ii,Ij ], σ

k∗
i

)
(10)

≡







λ1
it σ1

it θ1it λ1
1t · · · λ1

Jt σ1
1t · · · σ1

Jt
...

...
...

...
...

...
...

...
...

λK
it σK

it θKit λK
1t · · · λK

Jt σK
1t · · · σK

Jt


 , σk∗

it


 .

The agent constructs her high-quality signal as:

ykit = fk(xkit)

where the function fk ∈ F is chosen to minimize the expectation of an empirical risk function like

mean squared error

R[fk] = Et[c(x
k
it, y

k
it, f

k(xkit))] = Et[(y
k
it − fk(xkit))

2],

and the set of functions F is chosen with the help of Vapnik-Chervonenkis (VC) theory to avoid

overfitting.

A fundamental problem, however, is that the agent never observes ykit = σk∗
it . Thus, the agent

cannot construct the risk function, so choosing fk according to this criterion is not a well-posed

12



problem.

4.3 A Feasible and General Solution

While the agent cannot solve her problem under the most general assumptions, she can solve

her problem under more general assumptions than those required for DeGroot updating to be a

solution.15 Note that the agent’s problem can be posed as inferring the value of πk
ijt ≡ σk∗

it − σk
jt so

that she can properly adjust each socially observed signal σk
jt. To think about the agent’s problem

in terms of inference under uncertainty about πk
ijt, first denote the sampling process for data W ∗

it

by Γ∗
i , which results in the sampling distribution σk∗

it ∼ Gk∗
i , with mean µk∗

i . Denote the sampling

process for dataWit by Γi, where the sampling distribution σk
it ∼ Gk

i has mean µk
i . Define analogous

sampling processes and sampling distributions for the signals from each agent j.

There are five factors that drive the distribution of πk
ijt:

I (Random Sampling Error): Γ∗
i = Γj

II (Biased Sampling Process): Γ∗
i 6= Γj

III (Different Models): ϕk
i 6= ϕk

j

IV (Social Influence): j’s model of social learning and/or her network

V (Strategic Reporting): Part of what determines the function ϕk
j is strategic reporting

Assuming that only factors (I)-(III) drive the distribution of σk∗
it − σk

jt, we have

E

[
λk∗
it − λk

jt

]
= E

[
σk∗
it − σk

jt

]
= µk∗

i − µk
j ,

so that linear opinion pooling of signals adjusted using

skjt = σk
jt +

(
λk∗
it − λk

jt

)
(11)

solves the agent’s problem.16 Formally stated,

Proposition 4 (Biased Social Signals with Known Sources of Bias). Maintain assumptions A1-A3.

Now suppose that the agent receives biased signals in the sense that E[σk
jt] 6= µk∗

it , but that:

(A4c) Only factors (II) and (III) contribute to the fact that E[σk
jt] 6= µk∗

it .

15This moves beyond the cases studied in Aliprantis (2017).
16DeGroot (1974) studies social learning under a version of (I). Manski (2004) studies social learning under a

version of (II) focusing more attention on the construction of the interval Λk∗
i ≡ E[Λk∗

it ]. Manski (2004) models
communication differently than (A1): assuming that outcomes are directly observed rules out (III) and makes the
agent’s problem more specifically about how to shrink the interval Λk∗

i after observing potentially non-iid data. This
paper adopts a more stylized version of (II) in order to study social learning under (I)+(II)+(III).
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Then linear opinion pooling where the agent constructs unobserved high-quality signals with her

model as

σ̂k
it = θkitσ

k
it + (1− θkit)σ

k
Jt where (12)

σk
Jt =

∑

j∈J k

wk
jts

k
jt with wk

jt ≥ 0 ∀ j ∈ J k,
∑

j∈J k

wk
jt = 1 (13)

skjt = σk
jt +

(
λk∗
it − λk

jt

)
(14)

solves the agent’s problem.

Proof. Again repeatedly applying the linearity of the expectations operator, A3 and A4c imply

that

lim
t→∞

λk
it+1 = E[σ̂k

it] = E[θ
k

i σ
k
it + (1− θ

k

i )σ
k
Jt] = θ

k

i E[σ
k
it] + (1− θ

k

i )E[σ
k
Jt]

= θ
k

i E[σ
k
it] + (1− θ

k

i )E[
∑

j∈J k

wk
jts

k
jt] = θ

k

i E[σ
k
it] + (1− θ

k

i )
∑

j∈J k

wk
jtE[s

k
jt]

= θ
k

i µ
k
it + (1− θ

k

i )
∑

j∈J k

wk
jt

(
E[σk

jt − λk
jt] + λk∗

it

)
(15)

= µk∗
i .

5 Empirical Implementation and Opinion Dynamics

5.1 Empirical Implementation

Not observing the right hand side of Equation 11, the agent might assume she can replace the

unobserved quantity λk∗
it with the observed quantity λk

it to translate signals as:

(A5): skjt = σk
jt +

(
λk
it − λk

jt

)
.

The agent knows that A5 does not necessarily solve her problem if factors (IV) and (V) help to

drive the distribution of πk
ijt. Thus, she would like to lean on A5 as little as possible, or to use

signals from the senders for whom A5 is the most credible.

Define ∆ijt as the credibility that the agent i deems to A5 as applied to sender j’s signal,

and ∆k
it = f

(
{∆ijt}j∈J k

)
∈ [0, 1] as the total credibility agent i deems to A5 as applied to the

socially-available information on proposition k. Then if we define skjt = gk(Iit,IJt) by A5 and

denote the weights attached to each of these interpreted signals as the sender’s relative credibility

14



wk
jt =

∆ijt
∑Jk

j=1
∆ijt

, we can define

skJt =

Jk∑

j=1

wk
jts

k
jt

(assuming ∆ijt 6= 0 for some j ∈ J k), and the agent could infer signals using σ̂k
it = fk(Iit,IJt)

defined as

σ̂k
it = θkitσ

k
it + (1 − θkit)

[
∆k

its
k
Jt + (1−∆k

it)σ
k
it

]
. (fk)

Note that A5 allows for moving beliefs away from a signal, which violates the Monotonic-

ity assumption in Molavi et al. (2017), and characterizes the difference between this model’s

heterogeneous confidence learning rule and bounded confidence models like those developed in

Hegselmann and Krause (2002) or Sotiropoulos et al. (2015).

The final hurdle to empirically implementing the agent’s model of social learning is empirically

determining the credibility the agent gives to A5 as a means of adjusting a signal from sender j,

∆ijt. Any inductive inference requires invariance assumptions that may not be true; this is the

problem of induction. An invariance assumption the agent could invoke to assess credibility would

pertain to differences of beliefs across propositions:17

(A6) λk∗
it − λk

jt = λk′∗
it − λk′

jt for all t ∈ N, j ∈ J , and pk, pk
′

∈ K

Under A6, the agent could use the distribution of δkijt ≡ λk
it − λk

jt over the proposition space

as a means of assigning credibility to A5 applied to sender j. Many measures could be used to

characterize this distribution, like root-mean-squared-error, and here I will suppose the agent uses

relative entropy as developed in information theory for measuring uncertainty.

Figure 2 helps to illustrate the idea of (relative) entropy using the notion of Shannon entropy

from information theory (Shannon (1948)). The agent would be most informed about agent j

if the distribution of δkijt were a degenerate distribution, and would be least informed were δkijt
to follow a uniform distribution. In the Figure, f(δkimax t) = U [−1, 1] has the maximum entropy

(representing the least informative sender), senders j = 1, 2, 3 have high entropy (representing low

information), senders j = 4, 5, 6 have medium entropy (representing moderate information), and

senders j = 7, 8, 9 have low entropy (representing high information).

17We could imagine other invariance assumptions, including ones in which disagreement over any proposition is
proportional to disagreement over a set of predictive propositions. Such a generalization of A6 could help to explain
why so much attention is paid to seemingly unimportant propositions in the US’ “culture war.”
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Figure 2: Entropy of Sender j

Although senders j = 2 and j = 5 have the same average disagreement across propositions with

the agent, the agent will give more weight to interpreted signals from sender j = 5 because their

disagreement has lower entropy than that of sender j = 2. That is, the agent is more certain about

how she will disagree with sender j = 5. On the other hand, note that while the agent expects to

disagree differently with senders j = 1, j = 2, and j = 3, the agent deems interpreted signals from

these senders to be equally credible because they all have the same entropy. This helps to illustrate

that what matters to the agent’s judgment about credibility is not her average disagreement with

a sender, but how uncertain she is about her disagreement with a sender.

Assuming that the distribution of δkijt across propositions k ∈ {1, . . . ,K} has a probability

density function Qijt, the informational content of sender j’s signal (or certainty about δkijt) can be

defined as the Kullback-Leibler divergence from the uniform distribution over [−1, 1]:

DKL(Qijt : U) =

∫ 1

−1
Qijt(δ) log

(
Qijt(δ)

1/2

)
dδ,

which is a measure of the difference in entropy ofQijt relative to the maximum entropy (uncertainty)

distribution.18 I assume that the credibility the agent assigns to interpreted signals from sender j

is ∆ijt ≡ ρ(DKL(Qijt : U)).

5.2 Simulations

I now show simulations illustrating some of the belief dynamics that fk can generate. I first

show that beliefs can polarize and clusters can be sustained in a relatively simply setting. I then

show that this result is not an artifact of the simple setting by replicating it in more nuanced

18In another setting, Zanardo (2017) shows that Kullback-Leibler relative entropy satisfies desirable axioms as a
measure of disagreement.
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settings.

In both numerical experiments, I consider a network of J + 1 = 300 individuals learning about

K = 30 propositions, with θkit = 0.1 for all k, i, and t. Each agent assesses the credibility of A5

applied to sender j’s signal according to

∆ijt ≡ ρ(DKL(Qijt : U)) = [γ1DKL(Qijt : U)]γ2

where (γ1, γ2) = (100, 8) ∈ [0,∞) × [0,∞) can be thought of as distrust parameters, and the

credibility given to the sum of social information in the network ∆k
it = 1 for all k, i, and t. I

consider directly-observed data most likely to result in agreement, or convergence to a degenerate

distribution. I assume all individuals directly-observe data generating the same signals at all times

for all propositions:

σk
it = 0.5 ∀ t = 2, 3, 4, . . . ; k = 1, . . . ,K; and i = 1, . . . , J + 1.

What varies across Experiments 1 and 2 is the initial distribution of beliefs at t = 1. In

Experiment 1 I assume there are two clusters of individuals, C1 and C2, with card(C1) = 100 and

card(C2) = 200. Initial beliefs λk
i1 are generated as follows:

λ
k

i ∼




N (0.8, 0.1) if i ∈ C1 ∀k = 1, . . . ,K;

N (0.2, 0.01) if i ∈ C2 ∀k = 1, . . . ,K.

with

λk
i1 = min

{
max

{
λ
k

i , 0
}
, 1
}

∀k = 1, . . . ,K.

Figure 3a shows the initial distribution of beliefs by clusters for proposition p1.

Figure 3b shows that as individuals in the network update using fk, the updating maintains the

clustering, with C1 and C2 still clearly distinguishable from one another. The basic idea is that if a

given agent tends to agree with those in a widely-distributed cluster (unbiased but imprecise), but

tends to disagree with those in a tightly-distributed cluster (biased but precise), that agent will rely

more on interpreted signals from the disagreeing cluster, and this can cause her to overcompensate

when they provide her with unbiased signals.

This is what happens to agents in cluster C1 in Experiment 1 (Figure 3c). Given their dis-

agreement, for an individual in C1 the interpretation is that any signal from someone in C2 must,

on average, be an understatement of σ1∗
it , so the interpreted signal s1jt adjusts the received signal

upwards. Since the disagreement for individuals within C1 is more uncertain than the disagreement

across individuals in C1 and C2, individuals in C1 give more credibility to the interpreted signals

from those in C2. As a result, individuals in C1 overcompensate and move their beliefs away from

0.5. Note that while all agents form beliefs in the same way, initial conditions act as a mechanism

for generating behavior like the expectation types documented in Dominitz and Manski (2011).
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Figure 3: Beliefs in Experiment 1
Steady state belief distributions are those for which maxk,i ||λ

k
it − λk

it+1
|| < 1e-6.

Appendix C shows two further experiments illustrating that this type of clustered polarization

is not an artifact of having two clusters, and that there are possibilities for interesting questions

about which clusters polarize and which ones converge.

6 Conclusion

This paper presented a positive theory of belief formation. I proposed one way that an agent

might choose a single subjective probability from a set of possible probabilities. When the agent

faces ambiguity because her directly-observed data only allow her to partially identify a signal about

the truth of a proposition, she might seek to learn from individuals in her social network. Assuming

that communication is imperfect, so that individuals can only communicate a point estimate of their

signals and beliefs, the agent must determine how to combine the signals she observes.

I showed that when signals are unbiased, linear opinion pooling of signals generates DeGroot

updating, and is able to replicate classical inference with high-quality data yielding point-valued

signals. When individuals in the agent’s network have different models or access to different quality

data, then their signals will not be unbiased. In this case, the agent might still form beliefs by
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linear opinion pooling on interpreted signals. I considered how the agent might engage in social

learning by interpreting social signals, and how this approach to belief formation can lead to a non-

constricting rule of thumb capable of generating polarization and clustered, permanent disagreement

on a connected network where everyone observes the same data and processes that data with the

same model.

Topics for future investigation include understanding when a network is wise under various

definitions, whether beliefs must necessarily become unidimensional as in DeMarzo et al. (2003),

and how one might endogenize the agent’s network along the lines in Sethi and Yildiz (2012) so as to

generate a model of rational inattention (Sims (2003)). We might also be interested in whether the

agent’s problem of inference can address some of the concerns raised in Al-Najjar and Weinstein

(2009), and how belief dynamics change as specific assumptions are changed to move the agent

closer to Bayesian social learning (Molavi et al. (2017)). Finally, we might be curious about how

the aggregation procedure in this paper would behave if it were generalized to account not only

for disagreement but also for imprecision along the lines studied in Smithson (1999), Cabantous

(2007), and Gajdos and Vergnaud (2013). Adding social information to the empirical studies on

belief revision surveyed in Manski (2017) would help to discipline all of this theoretical work.
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A Appendix: Notation

The Agent’s Problem

pk Proposition k ∈ {1, . . . ,K}

T (pk) Truth-value of pk, taking values in {0, 1}

λk
it Agent i’s beliefs at time t about T (pk), taking values in [0, 1]

ϕk
i Agent i’s model for transforming data into signals about T (pk)

W ∗
it Data directly-observed by agent i yielding point-valued signals about T (pk) via ϕk

i

σk∗
it A point-valued signal

µk∗
i Agent i’s ideal belief when µk∗

i = Et[σ
k∗
it ]

Wit Data yielding set-valued signals about T (pk) via ϕk
i

Λk∗
it Set of possible beliefs (imprecise probability)

θkit Parameter that, along with σk
it, defines the correspondence ϕk

i : Wit ⇉ [σk∗
it , σ

k∗
it ]

The Agent’s Model of Social Learning

J Network of J individuals sending signals to agent i

J k ⊆ J Set of Jk individuals sending signals to agent i about proposition pk

Iit Agent i’s directly-observed information set

IJt Agent i’s socially-observed information set

ϕk
j Individual j’s model for transforming data into signals about T (pk)

Wjt Individual j’s directly-observed data

σk
jt Individual j’s point-valued signal

fk Agent i’s model of social learning, or for interpreting signals from senders in her network

skjt Agent i’s interpreted signal from sender j regarding proposition pk

δkijt Disagreement between agent i and sender j about proposition k , or λk
it − λk

jt

∆ijt Credibility agent i assesses to A5 when applied to sender j’s signals

∆k
it Total credibility of interpreted signals on proposition pk

wjt Weight given to interpreted signals from sender j

skJt Inferred signal from all socially-observed signals

σ̂k
it Inferred signal from combining directly-observed data and socially-observed signals
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B Appendix: Neighborhood Effects Decision Problem

Consider the following stylized decision problem: A Decision Maker (DM) is the head of a

low-income household that lives in a low quality neighborhood (D = 0), and must decide whether

to move to a high quality neighborhood (D = 1). If the household moves, they must pay a higher

rent and a moving cost, which I normalize to c. However, the DM’s probability of being employed

at wage w (pD) may be higher if D = 1 than if D = 0. The expected utility of remaining in the

low quality neighborhood is U0 = p0w and for moving it is U1 = p1w − c.

The DM knows that p1 ∈ {p0, p0 + θ}.19 The DM faces risk when her beliefs are the point

Pr(p1 = p0 + θ) = π ∈ [0, 1], and ambiguity/uncertainty when she holds a set of possible beliefs

where Pr(p1 = p0 + θ) ∈ [π, π] ⊆ [0, 1].

To illustrate the importance of belief formation for choices, consider the DM’s decision under

the following 3 decision rules: Expected utility maximization under risk (EU), Γ-Maximin (Γ−M),

and Γ-Minimax Regret (Γ−MR). I show below that all decision rules compare a single belief with

a combination of the cost of moving c, the neighborhood effect θ, and the wage:

D = 1 ⇐⇒ πDR ≥
c

θw
,

where πEU = π, πΓ−M = π, and πΓ−MR = (π + π)/2.

B.1 Expected Utility under Risk

Suppose the DM’s belief is π ∈ [0, 1]. The DM chooses

D = 1 ⇐⇒ U1 ≥ U0 ⇐⇒ p1w − c ≥ p0c

⇐⇒ π(p0 + θ)w + (1− π)p0w − c ≥ πp0w + (1− π)p0w

⇐⇒ πθw ≥ c (16)

⇐⇒ π ≥
c

θw
. (17)

Equation 16 shows that this comparison in Equation 17 is the same as whether the anticipated

gains from moving outweigh the costs.

B.2 Γ-Maximin

Suppose the DM’s belief is π ∈ [π, π] ⊆ [0, 1]. Under the Γ-Maximin decision rule the DM

chooses

D = 1 ⇐⇒ U1 ≥ U0 (18)

19Analogous to the binary state of the world studied in the text, a binary Average Treatment Effect (ATE) would
allow for p1 ∈ {p0, p0 + θ}, where θ is some positive constant. If potential outcomes Yi(D) represent employment
under various neighborhood treatments, then the ATE is defined as E[Yi(1)− Yi(0)] ≡ p1 − p0.
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where

U1 = min
π∈[π,π]

U1 = min
π∈[π,π]

π(p0 + θ)w + (1− π)p0w − c

= π(p0 + θ)w + (1− π)p0w − c

and

U0 = min
π∈[π,π]

U0 = min
π∈[π,π]

p0w

= p0w.

Thus Equation 18 can be stated as

D = 1 ⇐⇒ π(p0 + θ)w + (1− π)p0w − c ≥ π(p0)w + (1− π)p0w

⇐⇒ πθw ≥ c (19)

⇐⇒ π ≥
c

θw
. (20)

Note the similarity between Equations 19 and 20 and Equations 16 and 17. Now the condition for

moving is that the expected benefit of moving must be higher than the cost in the “worst-case”

scenario of moving.

B.3 Γ-Minimax Regret

Suppose the DM’s belief is π ∈ [π, π] ⊆ [0, 1]. Under the Γ-Minimax Regret decision rule the

DM chooses based on a comparison between

R1 = max
π∈[π,π]

[U0 − U1] and R0 = max
π∈[π,π]

[U1 − U0]

= max
π∈[π,π]

−πθw + c = max
π∈[π,π]

πθw − c

= c− πθw = πθw − c.

Thus the decision rule is

D = 1 ⇐⇒ R1 ≤ R0

⇐⇒ c− πθw ≤ πθw − c

⇐⇒ (π + π)θw ≥ 2c (21)

⇐⇒
π + π

2
≥

c

θw
. (22)
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C Appendix: Experiments 2 and 3

In Experiment 2, I assume there are four clusters of individuals, C1, C2, C3, and C4 with

card(C1) = 50, card(C2) = 100, card(C3) = 50, and card(C4) = 100. Initial beliefs λk
i1 are gen-

erated as follows:

λ
k

i ∼





N (0.8, 0.1) if i ∈ C1 ∀ k = 1, . . . ,K;

N (0.2, 0.01) if i ∈ C2 ∀ k = 1, . . . ,K;

N (0.8, 0.1) if i ∈ C3 and k even;

N (0.5, 0.1) if i ∈ C3 and k odd;

N (0.2, 0.01) if i ∈ C4 and k even;

N (0.5, 0.01) if i ∈ C4 and k odd;

with

λk
i1 = min

{
max

{
λ
k

i , 0
}
, 1
}

∀k = 1, . . . ,K.

Figures 4a and 5a shows the initial distribution of beliefs by clusters for propositions p1 and p2,

respectively. Figures 4 and 5 show how beliefs evolve by cluster.

In Experiment 3, I also assume there are four clusters of individuals, C1, C2, C3, and C4 with

card(C1) = 50, card(C2) = 100, card(C3) = 50, and card(C4) = 100. Initial beliefs λk
i1 are generated

as follows:

λ
k

i ∼





N (0.8, 0.1) if i ∈ C1 ∀ k = 1, . . . ,K;

N (0.2, 0.01) if i ∈ C2 ∀ k = 1, . . . ,K;

N (0.9, 0.1) if i ∈ C3 ∀ k = 1, . . . ,K;

N (0, 0) if i ∈ C4 ∀ k = 1, . . . ,K;

with

λk
i1 = min

{
max

{
λ
k

i , 0
}
, 1
}

∀k = 1, . . . ,K.

Figures 6a and 7a shows the initial distribution of beliefs by clusters for propositions p1 and p2,

respectively. Figures 6 and 7 show how beliefs evolve by cluster.
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Figure 4: Beliefs in Experiment 2
Steady state belief distributions are those for which maxk,i ||λ

k
it − λk

it+1
|| < 1e-6.
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Figure 5: Beliefs in Experiment 2
Steady state belief distributions are those for which maxk,i ||λ

k
it − λk

it+1
|| < 1e-6.
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Figure 6: Beliefs in Experiment 3
Steady state belief distributions are those for which maxk,i ||λ

k
it − λk

it+1
|| < 1e-6.
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Figure 7: Beliefs in Experiment 3
Steady state belief distributions are those for which maxk,i ||λ

k
it − λk

it+1
|| < 1e-6.
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